

Oxidation of Substituted Spiro[bicyclo[n.1.0]alkane-2,2'-[1,3]dioxolanes]. Formation of Substituted Lactones.

Janine Cossy*, Jean-Luc Ranaivosata, Barbara Gille, Véronique Bellosta*

Laboratoire de Chimie Organique associé au CNRS, ESPCI, 10 rue Vauquelin – 75231 Paris Cedex 05 - France

Received 18 March 1999; accepted 2 May 1999

Abstract: 5-(Aryl)-1,4',5'-trimethylspiro[bicyclo[3.1.0]hexane-2,2'-[1,3]dioxolanes] are transformed to substituted ketolactones by treatment with m-chloroperbenzoic acid in the presence of p-toluenesulfonic acid. © 1999 Elsevier Science Ltd. All rights reserved.

Keywords: lactones; ketals; oxidation; cyclopropanes.

Ketals can be transformed into lactones by treatment with peracids in acidic conditions. ¹ We have found that treatment of compounds of type 1^2 with m-chloroperbenzoic acid (MCPBA) ³ in the presence of p-toluenesulfonic acid (PTSA) can lead to lactones of type 3 or 4 depending on the nature of substituent R and on the ring size of the spiroketal. Ketones of type 2 can also be isolated as minor products.

When 1_A was treated with MCPBA (2.5 eq) in the presence of PTSA (1.0 eq) lactone 3_A was obtained with high regioselectivity and in good yield (62%); ketone 2_A was also isolated as a minor product (17%). Treatment of 1_B in the same conditions led to ketone 2_B (30% yield) and lactone 3_B (40% yield) with no trace of lactone 4_B . On the contrary, when 1_C , 1_D , and 1_E were treated for several days with MCPBA (2.5 eq) and PTSA (1.0 eq), only traces of lactones 3_{C} - 3_{D} were detected by GC/MS and ketolactones 4_{C} , 4_{D} and 4_{E} were respectively isolated as major products (~ 40% yield). Ketones 2_{C} - 2_{E} were also formed as side-products and were isolated in low yields (1% - 25%). The results are summarized in the Table.

e-mail: janine.cossy@espci.fr

b y				
Starting material	time	Products (yield % b)		
1		2	3	4
$1_{\mathbf{A}} \ \mathbf{n} = 1 \ ; \mathbf{R} = \mathbf{butyl}$	12 h	(17)	(62)	(-)
$1_{\mathbf{B}} \ \mathbf{n} = 2 \ ; \mathbf{R} = p$ -methoxyphenyl	7 d	(30)	(40)	(-)
1_C n = 1; R = phenyl	7 d	(20)	(-)	(41)
$1_{\mathbf{D}} \ \mathbf{n} = 1 \ ; \mathbf{R} = p\text{-tolyl}$	3 h	(24)	(70)	(-)
	7 d	(10)	(-)	(35)
1_E n = 1; R = p-methoxyphenyl	7 d	(traces)	(-)	(40)

Table: Oxidation of lactones $1_A - 1_E$ by MCPBA/PTSA ^a

^a The reactions were performed at rt in toluene/CH₂Cl₂ (1/1) at 0.1 M in **1**_A-**1**_E; MCPBA (2.5 eq); PTSA (1.0 eq). ^b Isolated products, after purification by flash-chromatography.

Variation of the aromatic substituent in ketals $\mathbf{1}_{C}$ - $\mathbf{1}_{E}$ suggests that the yield of ketolactone $\mathbf{4}_{C}$ - $\mathbf{4}_{E}$ (~ 40%) is almost unaffected by increasing electron density in the cyclopropane. When ketals $\mathbf{1}_{C}$ - $\mathbf{1}_{E}$ were treated for several days with an excess of MCPBA or with MCPBA in the presence of NaHCO₃, they were recovered in 70% yield and ketones $\mathbf{2}_{C}$ - $\mathbf{2}_{E}$ were isolated (5 – 10%). No lactones $\mathbf{3}_{C}$ - $\mathbf{3}_{E}$ or $\mathbf{4}_{C}$ - $\mathbf{4}_{E}$ were then detected. We have to point out that treatment of ketones $\mathbf{2}_{C}$ - $\mathbf{2}_{E}$ with MCPBA and PTSA led only to degradation. Treatment of lactone $\mathbf{3}_{D}$ with MCPBA (1.2 eq) and PTSA (1.0 eq) (7 days) furnished ketolactone $\mathbf{4}_{D}$ (40%). When lactone $\mathbf{3}_{D}$ was treated either with MCPBA alone or with PTSA alone, only traces of ketolactone $\mathbf{4}_{D}$ were detected (~ 4%) and the starting lactone was recovered. Therefore, it appears that the transformation of ketals $\mathbf{1}_{C}$ - $\mathbf{1}_{E}$ to ketolactones $\mathbf{4}_{C}$ - $\mathbf{4}_{E}$ implies the protonation of the ketal by PTSA. (Scheme)

By applying a simple procedure, 5-(aryl)-1,4',5'-trimethylspiro[bicyclo[3.1.0]hexane-2,2'-[1,3]dioxolanes] can thus be transformed easily into γ -disubstituted γ -lactones (aryl, acetonyl) in moderate yields.

References and notes

- 1. Sugimura, T.; Fujiwara, Y.; Tai, A. Tetrahedron Lett. 1997, 38, 6019-6022 and references therein.
- Compounds of type 1 were prepared by treatment of the corresponding ketone with (±)-2,3-butanediol.
- Commercially available from ACROS (70-75%).
- 4. The presence of lactone 4_B was not detected in the crude reaction mixture by GC/MS or in the ¹H NMR spectra.